Course Specifications

Programme(s) on which the course is given: Post-Graduate (Geophysics) Major or Minor element of programmes: Major Department offering the programme: Geology Department offering the course: Geology Academic year / Level: 00/ Post Graduate Date of specification approval:

a-Basic Information

Title: Data Evaluating and	1 Processing	Code: G669
Credit Hours: 2 Credit Hour		Lecture: 2 Credit
Tutorial:	Practical:	Total: 2 Credit Hour

b-Professional Information

1 – Overall Aims of Course:

• Providing an introduction to the techniques employed to interpret geophysical data collected for applied purposes.

2 - Intended Learning Outcomes of Course (ILOs)

- **a- Knowledge and Understanding:** By the end of this course, the student should be able to:
 a1- Understand the principles of geophysical data collection.
 - **a2-** Familiarize with the geological applications of exploration geophysics.
- b- Intellectual Skills: By the end of this course, the student should be able to:
 - **b1-** Apply knowledge and principles of mathematics to geological and geophysics problems
 - **b2-** Create subsurface interpretations consistent with local surface geology, and based on evaluation of geophysical data synthesized with other data.
 - **b3-** Analyze and interpret a suite of geophysical data from a particular locale and defend their interpretations

c- Professional and Practical Skills: By the end of this course, the student should be able to:

- **c1-** Explain the quality and precision of a geophysical data set.
- **c2-** Choose suitable filters and apply them to an unfamiliar data set to enhance anomalies of interest.
- **c3** Ability to select a geophysical technique that could resolve a subsurface structure/feature/anomaly.
- d- General and Transferable Skills: By the end of this course, the student should be able to: d1- Work as a part of team.
 - d2- Solve geophysical data problems.

3. Contents

Торіс	Credit hours	Lecture
Geophysical data	2	1
Data acquisition	2	1
Data processing obtained from field	8	4
Data storage in computer and processing	6	3

First model interpretation (underground model	4	2
based on geophysical results)		
Final interpretation (discussion with geologist,	6	3
including geophysical data)		
Total	28	14

4 – Teaching and Learning Methods

- 4.1- lectures.
- 4.2-

5- Student Assessment Methods

5.1- Regular written exam.	to assess a1, a2
5.2- Mid-term exam.	to assess a2, c1
5.3- At the end of term exam.	to assess a1-a2, b1-b2, c1-c2
5. 4- Reports and discussions	to assess d1-d2
•	

Assessment Schedule

Assessment 1: short exam (class activities)		every two weeks
Assessment 2:mid-term (written and practical)		week 7
Assessment 3: final-term (written and practical)		week 15-16
Assessment 4	Week	

Weighting of Assessments Written

w ritten	
Mid-Term Exam.:	20%
Final-term Examination:	60%
Semester Work (including reports, oral and discussion):	20%
Total:	100%

6- List of References

6.1- Course Notes:6.2- Essential Books (Text Books):

6.3- Recommended Books:

6.4- Periodicals, Web Sites, ... etc

7- Facilities Required for Teaching and Learning Data show

Course Coordinator: Prof. Hassan El Shayeb

Head of Department: Prof. Ahmed Al-Boghdady

Date: / / 2012